2011年6月4日 星期六

牛頓 Niudun Sir Isaac Newton(I.)

【生卒】:1643~1727

古希臘的燦爛文化在漫長的黑暗中世紀中埋沒風塵,黯然失色。15世紀,文藝復興的大旗飄揚在歐洲大陸上,自然科學獲得新的生命,蓬勃成長。科學巨匠N.哥白尼、第谷、J.開普勒、伽利略以及R.笛卡兒等先后馳名于歐洲。一場科學革命沖破了中世紀封建勢力和經院哲學的層層羅網,不斷取得勝利。

牛頓偉大的科學家,經典物理學理論體系的建立者正是在歐洲出現政治、經濟和科學文化新變革的時代誕生的。

家世和生平

1643年1月4日(儒略歷1642年12月25日)牛頓誕生于英格蘭林肯郡的小鎮烏爾斯索普的一個自耕農家庭。牛頓出生之前,父親已去世。牛頓生而孱弱,過了3年,他的母親再嫁給一位牧師,把孩子留在他祖母身邊撫養。8年之后,牧師病故,牛頓的母親帶著后夫所生的一子二女又回到烏爾斯索普。牛頓自幼沉默寡言,性格倔強,這種習性可能來自他的家庭處境。

牛頓少年時代喜歡擺弄機械小技巧。傳說他做過一架磨坊的模型,動力是小老鼠;有一次他放風箏時,在繩子上懸掛著小燈,夜間村人看去驚疑是彗星出現。他喜歡繪畫、雕刻,尤喜歡刻日晷,家里墻角、窗臺上到處安放著他刻劃的日晷,用以驗看日影的移動,以知時刻。12歲進離家不遠的格蘭瑟姆中學。牛頓的母親原希望他成為一個農民,能贍養家庭,但牛頓本人卻無意于此而酷愛讀書,以致經常忘了干活。隨著年歲增大,牛頓越發愛好讀書,喜歡沉思,做科學小試驗。他在格蘭瑟姆中學讀書時,曾寄寓在一位藥劑師家里,使他受到化學實驗的熏陶。

牛頓在中學時代學習成績并不出眾,只是愛好讀書,對自然現象有好奇心,例如顏色、日影四季的移動,尤好幾何學、哥白尼的日心說等等。他還分門別類地記讀書心得筆記,又喜歡別出心裁地做些小工具、小技巧、小發明、小試驗。當時英國社會滲入基督教新教思想,牛頓家里有兩位都以神父為職業的親戚,這可能影響牛頓晚年的宗教生活。從這些平凡的環境和活動中,看不出幼年的牛頓是一個才能出眾異于常人的兒童。

然而格蘭瑟姆中學的校長J.斯托克斯,還有牛頓的一位當神父的叔父W.艾斯庫別具慧眼,鼓勵牛頓上大學讀書。牛頓于1661年以減費生的身份進入劍橋大學三一學院,1664年成為獎學金獲得者,1665年獲學士學位。

17世紀中葉,劍橋大學的教育制度還浸透著濃厚的中世紀經院哲學的氣味。當牛頓進入劍橋大學時,那里還在傳授一些經院式課程,如邏輯、古文、語法、古代史、神學等等。兩年之后三一學院出現了新氣象。H.盧卡斯創設了一個獨辟蹊徑的講座,規定講授自然科學知識如地理、物理、天文和數學課程。講座的第一任教授I.巴羅是一位博學的科學家。就是這位教師把牛頓引向自然科學。在這段學習過程中,牛頓掌握了算術、三角,學習了歐幾里得的《幾何原理》。他又讀了開普勒的《光學》,笛卡兒的《幾何學》和《哲學原理》,伽利略的《兩大世界體系的對話》,R.胡克的《顯微圖集》,還有皇家學會的歷史和早期的《哲學學報》等。

牛頓在巴羅的門下學習,是他學習的關鍵時期。巴羅比牛頓大12歲,精于數學和光學,他對牛頓的才華極為贊賞,他認為牛頓的數學才能超過自己。

1665~1666年倫敦大疫。劍橋離倫敦不遠,為恐波及,學校停課。牛頓于1665年 6月回到故鄉烏爾斯索普。

由于牛頓在劍橋受到數學和自然科學的熏陶和培養,對探索自然現象產生極為濃厚的興趣。就在1665~1666年這兩年之內,他在自然科學領域內思潮奔騰,才華迸發,思考前人從未思考過的問題,踏進前人沒有涉及的領域,創建前所未有的驚人業績。1665年初他創立級數近似法以及把任何冪的二項式化為一個級數的規則。同年11月,創立正流數法(微分);次年 1月,研究顏色理論;5月,開始研究反流數法(積分)。這一年內,牛頓還開始想到研究重力問題,并想把重力理論推廣到月球的運行軌道上去。他還從開普勒定律中推導出使行星保持在它們軌道上的力必定與它們到旋轉中心的距離平方成反比。牛頓見蘋果落地而悟出地球引力的傳說,說的也是在此時發生的軼事。總之,在家鄉居住的這兩年中,牛頓以比此后任何時候更為旺盛的精力從事科學創造,并關心自然哲學問題。由此可見,牛頓一生的重大科學思想是在他青春年華、思想敏銳短短兩年期間孕育、萌發和形成的。

1667年牛頓重返劍橋大學,10月 1日被選為三一學院的仲院侶,次年 3月16日被選為正院侶。當時巴羅對牛頓的才能有充分認識。1669年10月27日巴羅便讓年僅26歲的牛頓接替他擔任盧卡斯講座的教授。牛頓把他的光學講稿(1670~1672)、算術和代數講稿(1673~1683)《自然哲學的數學原理》(以下簡稱《原理》)的第一部分(1684~1685),還有《宇宙體系》(1687)等手稿送到劍橋大學圖書館收藏。1672年起他被接納為皇家學會會員,1703年被選為皇家學會主席直到逝世。其間牛頓和國內外科學家通信最多的有R.玻意耳、J.柯林斯、J.夫拉姆斯蒂德、D.格雷果里、E.哈雷、胡克、C.惠更斯、G.W.F.von萊布尼茲和J.沃利斯等。牛頓在寫作《原理》之后,厭倦大學教授生活,他得到在大學學生時代結識的一位貴族后裔C.蒙塔古的幫助,于1696年謀得造幣廠監督職位,1699年升任廠長,1701年辭去劍橋大學工作。當時英國幣制混亂,牛頓運用他的冶金知識,制造新幣。因改革幣制有功,1705年受封為爵士。晚年研究宗教,著《圣經里兩大錯訛的歷史考證》等文。

牛頓于1727年3月31日(儒略歷20日)在倫敦郊區肯辛頓寓中逝世,以國葬禮葬于倫敦威斯敏斯特教堂。

《光學》和反射式望遠鏡的發明

光學和力學一樣,在古希臘時代就受到注意。由于天文觀測的需要,光學儀器的制作很早就得到了發展,光的反射定律早在歐幾里得時代已經聞名,但折射定律直到牛頓出生之前不久才為荷蘭科學家W.斯涅耳所發現。玻璃的制作早已從阿拉伯輾轉傳入西歐。16世紀荷蘭磨制透鏡的手工業大興。把透鏡適當組合成一個系統就可成為顯微鏡或望遠鏡。這兩種儀器的發明對科學發展起了重大作用。在牛頓之前,伽利略首先把他所制作的望遠鏡用在天象觀測上。伽利略式的望遠鏡是以一片會聚透鏡為目鏡、一片發散透鏡為物鏡的望遠鏡。還有當時盛行的由兩片會聚透鏡組成的開普勒望遠鏡。兩種望遠鏡都無法消除物鏡的色散。牛頓發明以金屬磨成的反射鏡代替會聚透鏡作為物鏡,這樣就避免了物鏡的色散。當時牛頓制成的望遠鏡長6英寸,直徑1英寸,放大率為30~40倍。經過改進,1671年他制作了第二架更大的反射式望遠鏡,并送到皇家學會評審。這臺望遠鏡被皇家學會作為珍貴科學文物收藏起來。為了制造反射式望遠鏡,牛頓親自冶煉合金和研磨鏡面(見彩圖) 。牛頓自幼愛好動手制模型,做試驗,這對他在光學實驗上的成功有極大幫助。

光的顏色問題早在公元前就有人在作猜測,把虹的光色和玻璃片的邊緣形成的顏色聯系起來。從亞里士多德以來到笛卡兒都認為白光是純潔的、均勻的,是光的本質,而色光只是光的變種。他們都沒像牛頓那樣認真做過實驗。

大約在1663年,牛頓即開始熱衷于光學研究,磨玻璃、制作望遠鏡也在這個時期。1666年,他購得一塊玻璃三棱鏡,開始研究色散現象。為了這個目的,牛頓在他的《光學》一書中寫道:“把我的房間弄暗,在我的窗板上開一個小孔,以便適量的太陽光射入室內,就在入口處安置我的棱鏡,光通過棱鏡折射達到對面的墻上。”牛頓看到墻上有彩色的光帶,光帶之長數倍于原來的白光點,他意識到這些彩色就是組成白色太陽光的原始光色(見彩圖)。為了證明這一點,牛頓進一步做實驗。在光帶投射的屏上也打一個小孔,讓光帶中彩色的一部分穿過第二個小孔,經過放在屏后的第二個棱鏡折射投到第二個屏上,又讓第一棱鏡繞它的軸緩慢轉動,只見穿出第二個小孔落在第二屏上的像隨著第一棱鏡轉動而上下移動。于是看到,為第一棱鏡折射最大的藍光,經過第二棱鏡也是折射得最大;反之,紅光被前后兩個棱鏡折射得最小。于是牛頓作出結論:“經過第一棱鏡折射后所得長方形的彩色光帶不是別的,正是由不同的彩色光所組成的白色光經折射而形成的。”也就是說:“白光本身是由折射程度不同的各種彩色光所組成的非均勻的混合體。”這就是牛頓的光色理論。它是通過實驗建立起來的,牛頓自稱這個實驗為“關鍵性實驗”。這個實驗可說是一個半世紀后 J.von夫瑯和費建立光譜術的基礎。事實上牛頓在他的《光學》第 1卷命題4問題1中用過1~2英寸長、寬僅1/10或1/20英寸的長方形的孔代替小圓孔,他說所得結果較前更清晰,但沒有夫瑯和費線的記載。牛頓在這方面做了大量的實驗之后,于1672年把他的結論用書信形式送交皇家學會評審。不料竟引起一場尖銳的論戰。當時惠更斯反對他,胡克攻擊他尤甚。早在1665年胡克就在英國提出光的波動理論,這只是一個假說。惠更斯則把它完整起來,認為空間的以太是無所不在的,他把以太作為振動的媒質,把媒質的每一個質點都看成一個中心,在中心的周圍形成一個波,惠更斯成功地用這個物理圖像來解釋光的反射、折射、還以此來研究冰洲石的雙折射(但是光的波動學說的確立還有待于一個半世紀之后由英國的T.楊的干涉實驗來證明)。牛頓則持光的微粒說,他認為波動說的最大障礙是不能解釋光的直線進行。他提出發光物體發射出以直線運動的微粒子流,微粒子流沖擊視網膜就引起視覺。它也能解釋光的折射與反射,甚至經過修改也能解釋F.M.格里馬爾迪發現的“衍射”現象。但對薄膜形成的彩色,牛頓則承認微粒說不如波動說解釋得明快。微粒說與波動說之爭在當時是十分激烈的,雙方爭論持續多年。

當年光的微粒說與波動說之爭,現在可以引用E.T.惠特克的話來結束這樁公案:“當A.愛因斯坦以M.普朗克的量子原理來解釋光電效應,光的微粒思想經過一個世紀的沉寂而在1905年又獲得了新生,并因此而導致光量子存在的基本原理。他的思想為實驗所充分肯定,特別是光子與電子碰撞所產生的康普頓效應服從經典的碰撞力學定律。而同時,關于光的波動性的實驗并沒有失效,于是我們不得不承認波動說和微粒假說都是正確的。”

無疑,牛頓的《光學》(Opticks)是和他的《原理》同為物理學的巨著,也是科學界的經典著作。《光學》第一版印于1704年,在胡克逝世之后問世。《光學》最后部分以獨特的形式附上一份著名的“問題”表,共提出31個“問題”(第一版提出16個“問題”)。在“問題”中所談到的不僅是光的折射、反射等,還涉及光與真空,甚至重力、天體等問題。在多處談到光的波動,涉及太陽光與物質的相互作用等問題,這些問題涉及物理學的諸多方面,富有啟發性,后人評價這些“問題”是《光學》中最重要的部分,并非虛語。

牛頓在《光學》一書中憑借實驗的結果與分析,建立了光的理論。但在全書中沒有提起不同玻璃具有不同折射率,在全書中也沒有做消色差的實驗,這或許是由于他當時還沒有獲得不同質玻璃的三棱鏡的緣故。但是牛頓制造反射式望遠鏡來避免物鏡的色散,卻是個妙法,迄今大型望遠鏡的制造還遵從此法。牛頓死后3年(1730)出版了經牛頓生前訂校過的《光學》第 4版。現在流行的1931年版本就是根據第4版重印的。

愛因斯坦在為牛頓《光學》1931年重印本所作的序中說:“牛頓的時代早已被淡忘了……牛頓的各種發現已進入公認的知識寶庫,盡管如此,他的光學著作的這個新版本還是應當受到我們懷著衷心感激的心情去歡迎的,因為只有這本書才能使我們有幸看到這位偉大人物本人的活動。”

萬有引力定律和《自然哲學的數學原理》

16世紀丹麥天文學家第谷對行星繞日運行作了長年累月的觀測,他死后德國天文學家開普勒整理并分析了第谷的20年的觀測記錄,總結出行星運動的著名開普勒三定律。這個發現不僅為經典天文學奠定了基礎,更重要的是導致了其后萬有引力定律的發現。

開普勒在得出行星運動三定律之前,1596年曾提出關于太陽行星間的吸引作用的思想;隨之提出物體作圓周運動時出現離心力問題。一般認為伽利略已領悟到離心力,但對它作進一步的認識和計算則有待于牛頓。1664年 1月20日牛頓在他的《算草本》上已提出如何計算物體作圓周運動時的向心力的具體方法。牛頓把推導、計算方法詳盡地寫入他的《原理》(第 3版)第一編第二章命題4定理4下面推論1中,明確地指出:“因此,由于這些圓弧代表運動物體的速度,向心力就是這個速度的平方除以圓周半徑。”必須注意到牛頓那時已熟諳開普勒第三定律,即r3/T2=常數,若把此式和向心力的定律相結合,顯然,可得如下結果:力F 作用在一物體上使它在半徑為r,速度為υ(周期為 T)作圓周運動,從而可得,于是。從這里可以看出,向心力的求得對于距離平方反比定律的推導是不可少的。順便提一下,惠更斯從不同途徑推導得離心力方程和牛頓的相似,結果于1673年發表。牛頓雖在早年的《算草本》上提出求向心力的方法,但他自己說“惠更斯先生后來所發表的離心力理論,我相信在我之前”。引人注意的是,在《原理》第一編和第三編中,凡提到軌道運行時,牛頓都沒有提及離心力一詞,總是強調拉向軌道中心的向心力。

關于引力反比于距離平方定律,歷史上記載了當時對此發明權的爭論,有人以為距離平方反比定律可以從開普勒第三定律直接推出,但缺乏向心力的概念和運算,不可能推出這定律。而向心力的概念與運算都是牛頓最早做出來的。長牛頓7歲的胡克當年就宣稱他早已知道引力反比于距離平方定律,但提不出證據來。當《原理》第1版在印刷時,胡克通過哈雷向牛頓要求分享此定律的發明權。牛頓加以拒絕。在《原理》(第3版)上述命題4下的注釋中提到距離平方反比定律適用于天體運動時,牛頓說:“雷恩爵士、胡克博士和哈雷博士曾分別注意過。”同時也提及“惠更斯先生在他的出色著作《鐘擺的振蕩》中曾把重力比之于旋轉體的離心力”。這樣,人們對距離平方反比定律的發明權就有所了解了。

有人認為,1666年牛頓在烏爾斯索普家中試圖以地球表面大圓弧上1度的長度為60英里來計算月地之間的引力;通過實際計算,月球繞地球的周期與實際不能符合,算稿便棄置一旁。1682年牛頓獲悉J.皮卡德的地球經度1度之長為69.1英里的數據,便重行計算,才使計算與實際觀測相吻合。牛頓把日常所見的重力和天體運動的引力統一起來,在科學史上有特別重要的意義。

行星繞日運動的軌道究竟是什么樣?這是當時科學界所關心的問題。這問題答案的公開和《原理》的出版密切相關,科學史上已有生動的記載。1684年1月C.雷恩、哈雷和胡克3位英國當時科學界著名人士在倫敦相敘討論行星運動軌道問題。胡克雖說他已通曉,但拿不出計算結果。于是牛頓的好友哈雷專程去劍橋請教牛頓。牛頓告訴哈雷他自己已計算過了,肯定地說,行星繞日軌道是橢圓;但手稿壓置多年一時找不到,應允重行計算,約期3個月后交稿。哈雷如約再度訪劍橋,牛頓交給一份手稿《論運動》,哈雷大為贊賞。牛頓在此稿基礎上另寫一書《論物體運動》,1684年12月送交英國皇家學會。此書第一部分主要相當于后來的《原理》第一編及第二編;而其余部分成為《原理》的第三編。哈雷慫恿牛頓寫成《原理》全書公開出版,由他出資印刷,并親自督校。1687年7月《自然哲學的數學原理》(Philosophiaenatu Raalis Principia Mathematica)第1版問世, 時距1664年牛頓開始思考并進行草算已23年。《原理》第2版于1713年出版,第3版于1725年出版(見彩圖)。《原理》原用拉丁文寫成。牛頓逝世后2年由A.莫特譯成英文付印,即今所見的流行的《原理》英文本。





牛頓名著《原理》(1686)扉頁

《原理》第一編之前有兩部分重要的論述。第一部分為定義。定義共8條,其中有關向心力的有5條。他說,施加于物體的力有不同來源,例如撞擊、壓力和向心力。向心力一詞是牛頓創造的(在另一場合即惠更斯稱之為離心力的補充詞)。牛頓在定義一章中有長篇詮釋,其中提到了一個假想實驗:“在高山上發射炮彈、炮力不足,炮彈飛了一陣便以弧形曲線下落地面。假如炮力足夠大,炮彈將繞地球面周行,這是向心力的表演。”今日人造衛星的設想在那時牛頓的腦子里已浮現出來了。在定義一章中牛頓盡情闡述了他的時空絕對性概念。他對人們熟知的空間與時間,擇名絕對空間和絕對時間。牛頓認為,只有在絕對空間中絕對運動才可以覺察,特別是在物體旋轉時。當時惠更斯和英國大主教G.貝克萊對此表示疑問。無論如何,這短短一章定義表達了牛頓對力與時空的基本觀點,是研究牛頓的重要原始文獻。

在第一編之前,除定義一章外,還有公理或稱運動定理一章。在這章里牛頓闡述著名的運動三定律(見牛頓運動定律)。第一運動定律一般稱作慣性定律,通常認為已由伽利略和笛卡兒所道出。為了要變更物體運動方向(或稱變更運動速度)必須有外力作用,這其間必然會產生質量的概念。質量(原文物質的量)這個基本概念是由牛頓在《原理》第一編定義章中首先提出的,成為物理學中最基本概念之一。他清楚地把質量和重量區分開來,闡明了在各種不同環境中兩個量的相互關系。在力學中牛頓用質量表示物體的特征。愛因斯坦指出:“只有引進質量這一新概念之后,他(牛頓)才能把力和加速度聯系起來。”動量一詞牛頓也作了定義。牛頓指出,動量是衡量物質運動的量,它聯系物質與運動兩個量;物質加倍,動量加倍;物質與運動都加倍;動量即為原來的4倍。隨后闡述動量守恒。牛頓在運動三定律之后有7個推論,其中論述到兩力同時作用一物體上,則物體加速度方向和力的合成都在兩力平行四邊形的對角線上。此后還有一段很長的詮釋,總論運動三定律的聯系性,還用兩擺的彈性碰撞和非彈性碰撞實驗來闡述運動守恒并說明第二定律和第三定律之間的關系。從上面看,牛頓運動三定律不是分立的,而是相關的。牛頓早年在《算草本》中以碰撞實驗研究力,在《原理》中他強調以“沖量”作為力的概念。隨后發展這個概念,說無限短促間隙的相關系列沖量就成為連續作用力。這句話就包含以微分形式表達力的定義。

牛頓設想,一質點在直線上作慣性運動,這質點和線外某一定點相聯,在相等時間內這聯線掃過的面積必然相等;如果在線上某點遇到一個外力,則質點要偏向質點原運動方向與外力方向之間的某一方向上運動。牛頓用他創造的無限小概念極限的方法最終證明了:一個運動著的質點,受到某個定點的外力作用,如果這個外力在質點和定點的聯線上,而且力的強度反比于距離二次方,那么這質點運動軌跡很可能是個橢圓,這定點就是橢圓的焦點。于此,牛頓得出行星與太陽之間聯線所掃過的面積必然和時間成比例。牛頓又設想,質點在橢圓上從一點經過無限短時間運行,這質點在短暫時間運行所到之處偏離切線的距離反比于從焦點到該點的距離平方。而當橢圓上兩點相接近時,牛頓得出,在這極限情況下開普勒的面積定律是關鍵條件。總之,牛頓得到如下結論:假如面積定律有效,橢圓形軌道意味著指向焦點的力必然反比于距離平方。牛頓于是著意證明,面積定律是作用在運動物體的力指向中心的充分和必要條件。這揭示了開普勒的第一、第二兩定律的重要性。

《原理》第二編論述在有阻力媒質(氣體、液體)內的質點運動。牛頓在這里用了更多的數學方法,而物理涵義較前為少。在第一編里牛頓費盡心力用各種方法證明宇宙間引力(向心力)之存在;而在第二編里,牛頓設想,在媒質中阻力與物體運行速度成正比;又設想與速度平方成正比;甚至認為一部分為速度之比,另一部分為速度平方之比。他還論證過一些其他的問題。在這些工作中牛頓以數學技巧來處理一些看來無實際物理意義的問題。他還研究了氣體的彈性和可壓縮性。

在《原理》第二編中,牛頓用擺在流體中的運動實驗測定重量(即地球引力)和慣性大小的關系。在經典物理學中這兩個量只能由實驗來測定。

關于聲學的研究,《原理》第二編中記載了牛頓從理論上研究聲速(見定理48、49、50),所得結果比實測低16%。他認為聲速正比于所謂“彈性力”的方根而反比于媒質密度方根。牛頓又研究了聲傳播的形式,他說聲的傳播是空氣的脈動所致,指出波的脈動只是媒質中質點上下交替運動,與擺的運動無異。在第二編最后文字中牛頓澄清了渦旋假設與天體運動無關。

牛頓原想把《原理》第三編寫成一般性的總結。但后來改變了計劃,標題為“宇宙體系”。在這編里討論了太陽系的行星、行星的衛星、彗星的運行,以及海洋潮汐的產生。他把這些作用的力叫做引力,即今所謂萬有引力。他解釋引力是兩物體間相互作用的力,太陽對行星有引力使之在軌道上運行,同時行星對太陽也有作用力,這是運動第三定律規定的。只是太陽與行星的質量懸殊太大,太陽的運動微乎其微。行星之間運動相互受到引力干擾,所謂多體問題中的攝動,牛頓在第三編中闡述了太陽對月亮的攝動,土星對木星的攝動。在第三編中還計算了木星衛星的距離與衛星運轉周期,作為開普勒第三定律的實例。

1680年11月與1681年3月大彗星兩度出現。牛頓開始以為是在直線上運動的兩個不同的彗星,只是方向相反。夫拉姆斯蒂德通過觀察提醒牛頓,這只是同一個彗星,繞著太陽運動。于是牛頓通過計算得出,1680年的彗星是以太陽為焦點作拋物線運動,它對太陽的向心力也是服從距離平方反比定律的。1695年哈雷假定這顆1680年彗星的軌道是繞著太陽運行的一個扁而長的橢圓形。哈雷與牛頓對此重作計算。在《原理》第2版和第3版的第三編中有詳細的觀測記錄和推算,預言這顆彗星約以75年繞日運動一周,即今日所知著名的哈雷彗星(中國最早對此彗星的記錄在公元前1057年)。最后牛頓在結論中說,“彗星是行星之一種,它繞太陽運行具有極大的偏心率”但他又說“三次觀測數據即可定出彗星在拋物線上運動軌道”。

談牛頓的物理學,不能不提及他在數學上的偉大貢獻。《原理》的全名是《自然哲學的數學原理》。所謂自然哲學在那時的含義包括物理、化學等,而主要是物理學。上面提過第一、第二兩編的中心是借數學方法來闡明物體運動的規律,因此可以看出數學在《原理》中的重要地位。讀者初讀《原理》往往以為是作者寫作時崇尚古希臘歐幾里得的幾何的規范。但細讀就可發現作者取幾何學的形式而實質賦有嶄新的內涵。作者在建立幾何條件之后,立即引入某種經過精心下定義的所謂極限法。這種方法基于極限術的一組普遍原理,有別于經典式的古希臘幾何學。極限學說詳述在《原理》第一編第一章11個引理和詮釋之中。在那里詳細說明了極限的意義:有兩個相互依賴的物理量,當兩個量逐漸變小時,牛頓稱它為流數,它的比率也在逐漸變化,而自變量達到無限小時比率達到一個極限定值,牛頓叫它流率。即今稱導數或微商。牛頓發現他的流變術非常有用,反過來此術可以求曲線包圍的面積,即今所稱積分。第一編第八章命題41即為積分術的應用。可以說,《原理》一書的中心內容是論述了牛頓在數學上的偉大創造即微積分術,并且應用這個創造去解決天體運動以及其他相關物理問題。微積分之發明,史家也歸功于萊布尼茲,對于這一數學上的偉大發明,牛頓與萊布尼茲孰先孰后,后世論者紛紛;即在當時兩方亦就此書信往來,已有爭議。試聽愛因斯坦如何贊美牛頓的微分發現。他說“只有微分定律的形式才能完全滿足近代物理學家對因果性的要求。微分定律的明晰概念是牛頓最偉大的理智成就之一”。

牛頓一生的重要貢獻是集16、17世紀科學先驅們成果的大成,建立起一個完整的力學理論體系,把天地間萬物的運動規律概括在一個嚴密的統一理論中。這是人類認識自然的歷史中第一次理論的大綜合。以牛頓命名的力學是經典物理學和天文學的基礎,也是現代工程力學以及與之有關的工程技術的理論基礎。這一成就,使以牛頓為代表的機械論的自然觀,在整個自然科學領域中取得了長達兩百年的統治地位。

哲學、宗教和其他

亞里士多德的哲學講求事物的和諧,求和諧思想是正確的,但亞里士多德認為天上的日、月、星辰的運行軌道是圓形,因為只有圓運動才是完美的、和諧的,而地上的運動,例如重物直線下落是凡俗的。古希臘哲學家的和諧思想不能在天與地之間連貫。到了17世紀,牛頓用引力理論和運動三定律把天上行星和它們的衛星運動規律,同地上重力下墜的現象統一起來,實現了天上人間的統一,這是牛頓在自然哲學上的偉大貢獻。

眾所周知,牛頓在理解光的本質上持微粒說。但他在同胡克、惠更斯等討論光的本質時,說光具有這種或那種本能激發以太的振動。這意味著以太是光振動的媒質(見以太論)。于此,似乎牛頓對光的雙重性有所理解;其實不然,他對以太媒質之存在極似空氣之無所不在,只是遠為稀薄、微細而具有強有力的彈性。他又申說,就是由于以太的動物氣質才使肌肉收縮和伸長,動物得以運動。他又進一步以以太來解釋光的反射與折射,透明與不透明,以及顏色的產生(包括牛頓環,見彩圖)他甚至于設想地球的引力是由于有如以太氣質不斷凝聚使然。《原理》第二編第六章詮釋的結尾說,從記憶中他曾做實驗傾向于以太充斥于所有物體的空隙之中的說法,雖然以太對于引力沒有覺察的影響。14、15世紀以來歐洲的學者對以太著了迷,以太學說風靡一時。當時科學巨擘笛卡兒對以太存在深信不疑。他認為行星之運行可以以太旋渦來解釋。以太學說成為一時哲學思潮。尊重實驗的牛頓也不免卷入這股哲學思潮激流中去,傾向于它存在。當時人們對超距作用看法不一。牛頓曾經指出他的引力相互作用定律,并不認為是最終的解釋,而只是從實驗中歸納出來的一條規則。因此,牛頓并未就引力本質作出結論。





牛頓環

牛頓在科學上的成就須由他的哲學思想和科學方法來尋根求源。牛頓的學生R.科茨曾在《原理》第2版序言中道出了其中的奧妙。古希臘、羅馬的哲學家憑著對自然現象的觀察和思考(中國先秦時代也有類似之處)總結出論斷,例如泰勒斯的學說:萬物的根源是水。即使像德謨克利特、盧克萊修的原子論,現在來評價還是很高的。但是他們的方法憑天才的臆測、思維與辯論,稱之為思辨哲學。到了中世紀,經院哲學統治著歐洲。科學、哲學淪為神學的奴婢。到15、16世紀,哥白尼、G.布魯諾、伽利略等人不畏坐牢、火刑等堅持不屈地向教會作斗爭,掙脫了侍奉上帝的桎梏。對自然現象的觀察、測量和實驗的風氣逐漸形成了。在物理學科中伽利略的實驗工作是實驗物理學的開端,牛頓深受其影響。隨后牛頓使作為實驗科學的物理學形成一個光輝體系,同時也使科學實驗方法闖入了哲學思想的殿堂。

牛頓認為從現象中可以得出科學原理,或者說科學基本原理可以從現象中導得或推出。牛頓在《原理》和《光學》兩書中明白表達他的做學問的方法,即要明白無誤地區別猜測、假設和實驗結果(及由此而歸納得出的結論),還有從某些假設條件下所得到數學推導。《原理》第一編十四章中處理細微粒子的運動和第二編命題23中設想氣體中有相互排斥質點的模型都是牛頓運用具有物理實質性的數學模型的例子,但是他對這些問題缺少實質性的實驗證據,未能寫出無可辯駁的論述。

論者可能認為牛頓只注重從實驗運用歸納法得出定律,而無視演繹法的重要性。這是有違事實的。1713年牛頓在出版《原理》第 2版時在給他的學生科茨的信中提到運動定律是居于首位的定律或稱之為公理,并說它們都是從現象中推斷或稱演繹而來的,并運用歸納法使之普適化。牛頓說:“這是一個命題在哲學中所能達到最高境界的例證。”誠然,必須看到歸納與演繹不能人為地對立起來。恩格斯指出“歸納和演繹正如分析和綜合一樣,是必然相互聯系著的。不應當犧牲一個而把另一個捧到天上去”。牛頓在此早著先鞭。

關于實驗與假設之間的關系,牛頓在各種場合都有論述。他在給奧爾登堡的信中說:“進行哲學研究的最好和最可靠的方法,看來第一是勤勤懇懇地探索事物的屬性并用實驗來證明這些屬性。然后進而建立一些假說,用以解釋這些事物的本性。”給科茨信中說:“任何不是從現象中推論出來的說法都應稱之為假說,而這樣一種假說無論是形而上學的還是物理學的,無論屬于隱蔽性質的還是力學性質的,在實驗哲學中都沒有它們的地位。”牛頓這些論述奠定了自然哲學的基礎,啟開了實驗科學的大門,300年來為自然科學的繁榮立下了不朽功勛。

牛頓研究事物規律的方法不同于那些只從簡單的物理假設出發的人,而是通過邏輯的演繹法得到對事物現象的解釋。愛因斯坦指出:“牛頓才第一個成功地找到了一個用公式清楚表述的基礎,從這基礎出發他用數學的思維,邏輯地、定量地演繹出范圍很廣的現象并且同經驗相符合。”“在牛頓之前還沒有什么實際的結果支持那種認為物理因果關系有完整鏈條的信念。”牛頓是完整的物理因果關系創始人;而因果關系正是經典物理學的基石。

牛頓出身于篤信基督教的家庭。在劍橋求學時代,他就懷著宗教生活里亦如科學實驗一樣可以自由自在的幻想和工作。《原理》完成后,他便著手有關基督教《圣經》的研究,并開始寫這方面的著作,手稿達150萬字之多,絕大部分未發表。可見牛頓在宗教著述上浪費了大量時間的精力。關于牛頓在1692~1693年間答復本特萊大主教 4封信論造物主(上帝)之存在,最為后人所詬病。所謂神臂就是第一推動出于第四封信中。從現代宇宙學來說,第一推動完全可能在物理框架中解決,而無需“神助”。

牛頓反對那時英國的國教“英格蘭教”。他反對三一教義,但不鮮明表白自己的意志,只是隱蔽地表明不愿擔任圣職,請人關說乃得免受圣職而仍舊享受劍橋大學學侶的待遇。總之,在對唇宗教問題上牛頓比之于他的先驅者如哥白尼、布魯諾、伽利略等赴湯蹈火而不辭的精神,則遜色多了。

1942年愛因斯坦為紀念牛頓誕生 300周年而寫的文章,對牛頓的一生作如下的評價“只有把他的一生看作為永恒真理而斗爭的舞臺上一幕才能理解他”。此贊語最恰當不過的了。

參考書目 J.Herivel,The Background to Newton's Principia,Clarendon Press, Oxford, 1965. 李珩著:《近代物理學奠基人牛頓》,上海科學技術出版社,上海,1984。

《中國大百科全書 物理學Ⅱ》 第808頁 作者 :錢臨照
分享到Facebook 分享到plurk

沒有留言:

張貼留言